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Abstract. This paper proposes an equivalent-circuit modeling technique for electrically-very-small 
wireless systems. The results obtained via the proposed method agree well with those via the induced 
electromotive force method, which is a very traditional analysis method for wire antennas. 

1. Introduction 

In recent years, wireless systems much smaller than the wavelength of electromagnetic waves 
(electrically-very-small) are widely used. Typical examples include near-field communication (NFC) 
systems, intrabody communication (IBC) systems [1], wireless power transfer (WPT) systems [2], 
and so on and so forth. Because such systems can be regarded as antenna problems as well as electric 
circuits, intense researches have been done by engineers in both the fields. However, sometimes their 
knowledges are separated and hard to integrate because the commonly used design analysis 
techniques are highly specialized in spite of the fact that they are based on the same physics, i.e. 
Maxwell’s equations. This paper proposes an equivalent-circuit modeling technique for 
electrically-very-small wireless systems. 

2. Theory 

The proposed method is based on the method of moments (MoM), which is well-established in the 
field of computational electromagnetics [3]. If the space is uniform, isotropic, and non-dispersive, 
only the source of the electromagnetic wave is the current flowing on conductors. Therefore, all the 
antenna characteristics can be found once the current distributions are obtained. For this purpose, the 
MoM expands the current distributions 𝑱 as follows: 

 𝑱 𝒓# = 𝐼&𝑭&(𝒓#)
*

&+,

, (1) 

where 𝒓′ is the source point, 𝐼& is the unknown current coefficient, 𝑭&(𝒓#) is the known vector 
basis function, and 𝑁 is the total number of them. The current coefficient 𝐼& can be obtained by 
solving the following system of equations: 

 𝑉1 = 𝑍1&𝐼&

*

&+,

, 𝑚 = 1,… ,𝑁, (2) 

where 𝑉1 is the voltage coefficient and 𝑍1& is the self-/mutual impedance. These quantities are 
defined as follows. 

 𝑉1 = − 𝑭1 𝒓 ∙ 𝑬src 𝒓 𝑑𝑉, (3) 
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𝑍1& = 𝛾

𝜁
4𝜋 𝑭1(𝒓) ∙ 𝑭& 𝒓#

𝑒BCD

𝑅 𝑑𝑉′𝑑𝑉

+
1
𝛾
𝜁
4𝜋 ∇ ∙ 𝑭1 𝒓 [∇′ ∙ 𝑭& 𝒓# ]

𝑒BCD

𝑅 𝑑𝑉′𝑑𝑉, 
(4) 

where 𝛾 = 𝑠 𝜀𝜇 is the propagation constant and 𝜁 = 𝜇/𝜀 is the wave impedance, supposing 
𝑠 = 𝑗𝜔 is the complex angular frequency, 𝜀 is the permittivity, and 𝜇 is the permeability. In 
addition, 𝒓 is the observation point, 𝑅 = |𝒓 − 𝒓′| is the distance between the source and the 
observation points, and the integration range is all over the space. 

Now, substituting the Taylor expansion of the exponential function 

 𝑒BCD =
−𝛾𝑅 Q

𝑖!

T

Q+U

  

into Eq. (4) and using an equality such that 

 ∇ ∙ 𝑭1 𝒓 ∇# ∙ 𝑭& 𝒓# 𝑑𝑉#𝑑𝑉 = 0,  

we get the following expression: 

 

𝑍1& =
1
𝛾
𝜁
4𝜋 ∇ ∙ 𝑭1 𝒓 [∇′ ∙ 𝑭& 𝒓# ]

1
𝑅 𝑑𝑉′𝑑𝑉

+ 𝛾Q
−1 QB,𝜁
𝑖 − 1 ! 4𝜋 𝑭1(𝒓) ∙ 𝑭& 𝒓# 𝑅QBW𝑑𝑉′𝑑𝑉

T

Q+,

+
−1 QX,𝜁
𝑖 + 1 ! 4𝜋 ∇ ∙ 𝑭1 𝒓 ∇# ∙ 𝑭& 𝒓# 𝑅Q𝑑𝑉′𝑑𝑉 . 

(5) 

Now, the term proportional to 𝛾Q shall be denoted by 𝑍1&
(Q) . The lowest order term 𝑍1&

(B,) is 
identical to the impedance of the capacitance 

 𝐶 = 4𝜋𝜀 ∇ ∙ 𝑭1 𝒓 ∇# ∙ 𝑭& 𝒓#
1
𝑅 𝑑𝑉

#𝑑𝑉
B,

.  

Besides, the term 𝑍1&
(,) , which is proportional to 𝛾 , corresponds to the impedance of the 

inductance 

 𝐿 =
𝜇
4𝜋 𝑭1 𝒓 ∙ 𝑭& 𝒓#

1
𝑅 𝑑𝑉′𝑑𝑉 +

𝜇
8𝜋 ∇ ∙ 𝑭1 𝒓 ∇# ∙ 𝑭& 𝒓# 𝑅𝑑𝑉#𝑑𝑉,  

where the first term is equivalent to Neumann’s formula. 
The term 𝑍1&

(W)  can be simplified as follows: 

 𝑍1&
(W) = −𝛾W

𝜁
6𝜋 𝑭1 𝒓 𝑑𝑉 ∙ 𝑭& 𝒓# 𝑑𝑉# .  

In particular, the self-impedance component 𝑍11
(W)  is equivalent to the radiation resistance of the 

infinitesimal dipole with the length of 

 𝑙 = 𝑭1 𝒓 𝑑𝑉 .  

The proposed method is hereinafter called the impedance expansion method (IEM). 

3. Example Problem 

As shown in Fig. 1, a straight wire with the radius 𝑎 and the length 3𝑙 has feeding ports 1 and 2 
at the position of 𝑧 = 𝑙 and 2𝑙, respectively. The current distributions along the wire are expanded 
by piecewise linear basis functions (𝑚 = 1, 2) defined as follows: 
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 𝑓1 𝑧 =
𝑙 − 𝑚𝑙 − 𝑧

𝑙 , 𝑚 − 1 𝑙 < 𝑧 < 𝑚 + 1 𝑙

0, elsewhere
,  

 
𝜕𝑓1 𝑧
𝜕𝑧 =

𝑚𝑙 − 𝑧
𝑚𝑙 − 𝑧 𝑙 , 𝑚 − 1 𝑙 < 𝑧 < 𝑚 + 1 𝑙

0, elsewhere
.  

They can be expressed as vector basis functions as 
 𝑭1 𝒓 = 𝑧𝛿 𝑥 𝛿 𝑦 𝑓1 𝑧 , (6) 

 𝛻 ∙ 𝑭1 𝒓 = 𝛿 𝑥 𝛿 𝑦
𝜕𝑓1 𝑧
𝜕𝑧 . (7) 

 

By substituting Eqs. (6) and (7) into Eq. (5) and ignoring the terms of 𝑖 ≥ 3, we get the following 
expressions for the self- and the mutual impedances: 

 

𝑍1& ≃
1
𝛾
𝜁
4𝜋

𝜕𝑓1 𝑧
𝜕𝑧

𝜕𝑓& 𝑧#

𝜕𝑧#
1
𝑅 𝑑𝑧

#
&X, p

&B, p
𝑑𝑧

1X, p

1B, p

+ 𝛾
𝜁
4𝜋 𝑓1 𝑧 𝑓& 𝑧#

1
𝑅 𝑑𝑧

#
&X, p

&B, p
𝑑𝑧

1X, p

1B, p

+
𝜁
8𝜋

𝜕𝑓1 𝑧
𝜕𝑧

𝜕𝑓& 𝑧#

𝜕𝑧# 𝑅𝑑𝑧#
&X, p

&B, p
𝑑𝑧

1X, p

1B, p

− 𝛾W
𝜁
6𝜋 𝑓1 𝑧 𝑓& 𝑧# 𝑑𝑧#

&X, p

&B, p
𝑑𝑧

1X, p

1B, p
, 

(8) 

where the distance between the source and the observation points is approximated as 
 𝑅 ≃ 𝑎W + 𝑧 − 𝑧# W.  
The self- and the mutual impedances expressed by Eq. (8) can also be represented by the equivalent 
circuit shown in Fig. 2. The capacitances represent the impedance components proportional to 𝛾B, 
and can be calculated as follows: 

 𝑝1& =
1
4𝜋𝜀

1
𝑅 𝑑𝑧′

&p

&B, p
𝑑𝑧

1p

1B, p
.  
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Fig. 1. Straight wire with two feeding ports and basis functions.
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𝑐,, 𝑐,W 𝑐,s
𝑐,W 𝑐WW 𝑐Ws
𝑐s, 𝑐sW 𝑐ss

=
𝑝,, 𝑝,W 𝑝,s
𝑝W, 𝑝WW 𝑝Ws
𝑝s, 𝑝sW 𝑝ss

B,

  

 𝐶1 = 𝑐1&

s

&+,

, 𝐶1& = −𝑐1&  

The inductances represent the impedance components proportional to 𝛾 and can be obtained as 
𝐿1& = 𝑍1&

(,)/𝑠. The dependent voltage sources represent the impedance components proportional to 
𝛾W and can be obtained as follows: 
 𝛥𝑉, = 𝑍,,

(W)𝐼, + 𝑍,W
(W)𝐼W,  

 𝛥𝑉W = 𝑍W,
(W)𝐼, + 𝑍WW

(W)𝐼W.  

 

4. Numerical Examples 

In this section, numerical results in the condition 𝑎 = 1.5	mm and 𝑙 = 75	mm are discussed. The 
circuit parameters are as follows: 

 

𝐶, = 𝐶s = 933.0174	 fF , 𝐶W = 799.3008	 fF ,
𝐶,W = 𝐶Ws = 216.6863	 fF , 𝐶,s = 45.40740	 fF ,
𝐿,, = 𝐿WW = 36.60338	 nH , 𝐿,W = 𝐿W, = 15.02211	 nH ,

	

𝑍,,
(W)

𝑠W =
𝑍,W
(W)

𝑠W =
𝑍W,
(W)

𝑠W =
𝑍WW
(W)

𝑠W = −1.2508654×10B,�	 𝛺 ∙ sW . 

 

Now, the frequency characteristics of the 𝑌-parameters defined by 

 𝑌,, 𝑌,W
𝑌W, 𝑌WW

= 𝑍,, 𝑍,W
𝑍W, 𝑍WW

B,
  

are discussed. Fig. 3 plots (a) the real and (b) the imaginary parts of 𝑌,, and (c) the real and (d) the 
imaginary parts of 𝑌W,. The dashed lines denoted by “EMF” indicate the results obtained via the 
induced electromotive force (EMF) method, which is a very traditional analysis method for wire 
antennas [4]. The results obtained via the IEM agree well with those via the EMF method. Therefore, 
the proposed circuit modeling method is valid. 

C1 C2 C3

V1 I1
∆V1 L11

L12 = L21

L22
∆V2

I2 V2

C12 C23

C13

Fig. 2. Equivalent circuit derived via the IEM.
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5. Conclusion 
Basic theory and numerical examples of an equivalent-circuit modeling technique for 

electrically-very-small wireless systems were described. The proposed method is based on the 
method of moments. The results obtained via the proposed method agree well with those via the 
induced electromotive force method, which is a very traditional analysis method for wire antennas. 
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Fig. 3. Self-/mutual admittances: (a) G11, (b) B11, (c) G21, and (d) B21.


