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Abstract. A graph G is said to be singular if its adjacency matrix is singular; otherwise it is said to be 

non-singular. In this paper, we using the results of determinant on looped-trees to compute the 

determinant of the complement of a certain class of trees with diameters 3 and 4. 

1. Introduction and Preliminaries 

A graph is completely determined by its adjacencies. This information can be conveniently stated 

in matrix form. Indeed, with a given graph, adequately labeled, there are associated several matrices, 

including the adjacency matrix, cycle matrix, and cocycle matrix. It is often possible to make use of 

these matrices in order to identify certain properties of a graph. The classic theorem on graphs and 

matrices is the Matrix-Tree Theorem, which gives the number of spanning trees in any labeled graph  

(see [1]). 

The results of adjacency matrix with non-singularity of tree and tree complement are following. In 

1989, S. V. Gervacio and H. M. Rara [2] investigated non-singularity of trees. In 1996, S. V. Gervacio 

[3] was determined the singularity or non-singularity of the complement of a tree with diameter less 

than 5, indeed, for a graph tree T, T is singular if diameter of tree is 0, 1, or 2 i.e. det A(T) = 0. 

Recently. In 2015, N. Pipattanajinda and Y. Kim [4, 5] obtained the determinant of the complement of 

a tree with diameter 5, and determined the singularity or non-singularity of the complement of a certain 

class of trees with diameter 5. Furthermore, the determinant of the complement of a tree with diameter 

4 is not found. In this paper, we will use the results of [5], determinant on looped-trees, to compute the 

determinant of complement of trees with diameters 3 and 4.      

By a graph G, we mean a pair (V(G), E(G)), where V(G) is a finite non-empty set of elements called 

vertices and E(G) ⊆ {{u, v}|u, v ∈ V(G)}, the set of 2-subsets of V(G) whose elements are called 

edges. The edge {u, u} in a graph G is called loop. A graph G is a simple graph if it has no loops and 

no more than one edge between any two different vertices. For a simple graph G = (V(G), E(G)), a 

graph Go = (V(Go), E(Go))  with V(Go) = V(G)  and E(Go) = {{u, v}|{u, v} ∈ E(G)} ∪ {{u, u}|u ∈
V(Go)} is called a looped-graph of G. In particular, if G is a tree, Go is called a looped-tree.  

If G is a graph with vertices x1, x2, … , xn, we define the adjacency matrix of G to be the n×n 

matrix A(G) = (aij), where aij = {
1 if {xi, xj} ∈ E(G)

0 otherwise.
  The graph G is said to be singular if A(G) 

is singular, i.e., det A(G) = 0; otherwise G is said to be non-singular. If S ⊂ V(G), then G ∖ S denotes 

the graph obtained from G by deleting all the vertices x ∈ S. The complement G of G is a graph such 

that V(G) = V(G) and {u, v} ∈ E(G) if and only if {u, v} ∉ E(G) for any u, v ∈ V (G) and u ≠ v. The 

loop complement G
o
 of G is a graph such that V(G

o
) = V(G) and {u, v} ∈ E(G

o
) if and only if {u, v} 

∉ E(G) for any u, v ∈ V(G). When G is a simple graph, the loop complement of G is the complement 
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of Go, that is, G
o

= Go, and the loop complement of Go is the complement of G, that is, Go
o

= G. 

Other terms whose definitions are not given here may be found in many graph theory books, e.g., [1]. 

Following from [5], for positive integers m, r, s, m1, m2, ⋯ , mr, we define a series of looped-trees, 

T2:1
0  , T2:m

0 , T3:r,s
0  and T4:m1,…,mr

0  as follows: by T2:1
0  we mean a looped-tree of a tree with diameter ≤ 

2, which is depicted in fig. 1 where x is called the central vertex, and m is the number of vertices but 

the central vertex w. For two disjoint looped-trees T2:r
0  , T2:s

0  as follows: by with central vertices x, y 

respectively, we form a looped-tree T3:r,s
0  by joining two central vertices as shown in fig. 1, where x, 

y is called central vertices of T3:r,s
0  . For disjoint looped-trees T2:m1

0 , T2:m2

0 , … , T2:mr

0 , with central 

vertices y1, y2, … , yr respectively, we form a looped-tree T4:m1,…,mr

0  by joining all central vertices yi 

to a new vertex x (see fig. 2 where x is called the central vertex of T4:m1,…,mr

0 ). 

 
Fig. 1. Graph T2:m

0 , T3:r,s
0  and T4:m1,…,mr

0  

Next, the following results have been proved. 

Lemma 1.1 [5]  The determinant of looped-trees T2:m
0 , T3:r,s

0  and T4:m1,…,mr

0  are following. 

(i) |A(T2:m
0 )| = 1 − m, 

         (ii) |A(T3:r,s
0 )| = rs − r − s, and 

          (iii) |A(T4:m1,…,mr

0 )| = ∏ (1 − mi) − ∑
(1−m1)(1−m2)⋯(1−mr)

(1−mi)
r
i=1

r
i=1 . 

For the complete graph Kk
(1)

of order k (k ≥ 1)  with 1 loop, and a graph G of order n, the 

following property was shown in [6], where Kk
(1)

+ G
o
 means the join of Kk

(1)
 and G

o
. 

Lemma 1.3 [6]  Let G be a graph of order n. Then |A(G)| = (−1)n+k−1|A(Kk
(1)

+ G
o

)|. 

 Let G be a graph whose vertices are v1, v2, … and let every edge be associated with the variable 

wi. Then we can construct a variable adjacency matrix A(G,w) for the graph G as follows: the (i, j) 

entry is wk if and only if {vi, vj} ∈ E(G) and the variable wk is associated with edge {vi, vj}, and 

this entry is 0 if {vi, vj} ∉ E(G). We note that the ordinary adjacency matrix A(G) is obtained from 

A(G,w) by substituting wk = 1 for each of the variables for the edges of G. Let G be a graph. An 

(ordinary) linear subgraph of G is a spanning subgraph whose components are lines or cycles. Further, 

let n be the number of linear subgraphs of G and let Gi be the ith linear subgraph. In [3], F. Harary 
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showed the following theorem. We note that a simple observation gives of the theorem works for our 

case in which the components of a linear subgraph contain loops. 

Lemma 1.4 [7] Let G be a graph. Then  

|A(G, w)| = ∑ |A(Gi, w)|n
i=1  and |A(G, w)| = ∑ (−1)ei2ci ∏ wk

2
wk∈Li

∏ wjwj∈Mi

n
i=1  , 

where (1) ei is the number of even components of Gi, (2) ci is the number of components of Gi 

containing more than two points, and thus consisting of a single undirected cycle, (3) Li is the set of 

components of Gi consisting of two points and the line joining them, and (4) Mi is the remaining 

components of Gi each of which is a cycle. 

2. The Determinant of Complement of Trees with Diameter 3 

For a looped-tree T3:r,s
0

 with central vertices x and y and z ∉ V(T3:r,s
0 ), denoted T3:r,s

0 >y
x z0 by the 

graph with V(T3:r,s
0 >y

x z0) = V(T3:r,s
0 ) ∪ {z} and E(T3:r,s

0 >y
x z0) = E(T3:r,s

0 ) ∪ {{x, z}, {y, z}, {z, z}}. 

Lemma 2.1  For positive integers r and s,  

|A(T3:r,s)| = (−1)t|A(T3:r,s
0 >y

x z0, w)| 

where the values associated with a loop at z, the edge {x, z} and the edge {y, z} are 1 − (r + s), 1 − r 

and 1 − s respectively, and every other edge has the value 1, and t = r + s + 2 is the order of T3:r,s
0 . 

Proof. From Lemma 1.3, |A(T3:r,s)| = (−1)t|A(T3:r,s
0 + z0)|, where t = r + s + 2 is the order of 

T3:r,s
0 . We note that the adjacency matrix of T3:r,s

0 + z0 follow this: 

 
By subtract rows was corresponding to 𝐱𝟏, . . . , 𝐱𝐫  from the last row corresponding to z. 

Similarly, by subtract rows was corresponding to 𝐲𝟏, . . . , 𝐲𝐬 from the last row corresponding to z. 

Then we now subtract columns corresponding to 𝐱𝟏, . . . , 𝐱𝐫, 𝐲𝟏, . . . , 𝐲𝐬 from the last column to get: 

 
where the values associated with a loop at z, the edge {x, z} and the edge {y, z} are 1 − (r + s), 1 − r 

and 1 – s, respectively, and every other edge has the value 1.  
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Fig. 2. Graph (T3:r,s
0 >y

x z0, w) of Lemma 2.1 

Theorem 2.2  For positive integers r and s,  

|A(T3:r,s)| = (−1)trs 

where t is the order of T3:r,s
0 . 

Proof. By applying Lemma 2.1, we have |A(T3:r,s)| = (−1)t|A(T3:r,s
0 >y

x z0, w)|, where t is the 

order of T3:r,s
0 . 

We partition the set of all linear subgraphs of T3:r,s
0 >y

x z0 into 4 classes ℋ1, ℋ2, ℋ3 which 

consists of all linear subgraphs containing a cycle {x, y, z}, a line {x, z}, and a line {y, z}, respectively, 

and ℋ4 consist of all linear subgraphs containing neither {x, z} or {y, z} nor a cycle {x, y, z}. By 

Theorem 1.4, we have |A(T3:r,s)| = (−1)t|A(T3:r,s
0 >y

x z0, w)| = (−1)t ∑ (∑ |A(𝐻, w)|H∈ℋ𝑖
)4

i=1 . 

(1) Consider ∑ |A(𝐻, w)|H∈ℋ1
.  From ℋ1 is the class which consists of all linear subgraphs 

containing a cycle {x, y, z}, then ∑ |A(H, w)|H∈ℋ1
= |

0 1 1 − r
1 0 1 − s

1 − r 1 − s 0
| = 2(1 − r)(1 − s), see 

fig. 3(a). 

(2) Consider ∑ |A(𝐻, w)|H∈ℋ2
.  From ℋ2 is the class which consists of all linear subgraphs 

containing a line {x, z}, then ∑ |A(H, w)|H∈ℋ2
= |

0 1 − r
1 − r 0

| |T2:s
0 | = −(1 − r)2|T2:s

0 |, see fig. 3(b). 

(3) Consider ∑ |A(𝐻, w)|H∈ℋ3
.  From ℋ3 is the class which consists of all linear subgraphs 

containing a line {y, z}, then ∑ |A(H, w)|H∈ℋ3
= |

0 1 − s
1 − s 0

| |T2:s
0 | = −(1 − s)2|T2:r

0 |, see fig. 3(c). 

(4) Consider ∑ |A(𝐻, w)|H∈ℋ3
 .  From ℋ3  is the class which consisting of all linear 

subgraphs containing neither {x, z} or {y, z} nor a cycle {x, y, z}, then ∑ |A(𝐻, w)|H∈ℋ2
= (1 − (𝑟 +

𝑠))|𝑇3:𝑟,𝑠
0 |, see fig. 3(d). 

From (1) – (4) and Lemma 1.1 (i) and (ii), |A(T3:r,s)| 

= (−1)t(2(1 − r)(1 − s) − (1 − r)2|T2:s
0 | − (1 − s)2|T2:r

0 | + (1 − (r + s))|T3:r,s
0 |) 

= (−1)t (2(1 − r)(1 − s) − (1 − r)2(1 − s) − (1 − s)2(1 − r)

+ (1 − (r + s))(rs − r − s)) 
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= (−1)t ((1 − r)(1 − s)(r + s) + (1 − (r + s))(rs − r − s)) 

= (−1)trs. 

 3. The Determinant of Complement of Trees with Diameter 4 

For a looped-tree T4:m1,…,mr

0
 with central vertex x and z ∉ V(T4:m1,…,mr

0 ), denoted T4:m1,…,mr

0 x~z0 

by the graph with V(T4:m1,…,mr

0 x~z0) = V(T4:m1,…,mr

0 ) ∪ {z}  and E(T4:m1,…,mr

0 x~z0) =

E(T4:m1,…,mr

0 ) ∪ {{x, z}, {z, z}}. 

Lemma 3.1  For positive integers m1, m2, … , mr,  

|A(T4:m1,…,mr
)| = (−1)t|A(T4:m1,…,mr

0 x~z0, w)| 

where the values associated with both a loop at z and the edge {x, z} is 1− r, and every other edge has 

the value 1, and t is the order of T4:m1,…,mr

0 . 

Proof. From Lemma 1.3, |A(T4:m1,…,mr
)| = (−1)t|A(T4:m1,…,mr

0 + z0)| , where t  is the order of 

T4:m1,…,mr

0 . We note that the adjacency matrix of T4:m1,…,mr

0 + z0 is of the following form: 

 
By subtracting rows corresponding to 𝐲𝟏, . . . , 𝐲𝐫 from the last row corresponding to z, and we now 

subtract columns corresponding to 𝐲𝟏, . . . , 𝐲𝐫 from the last column to get 

 
where the values associated with both a loop at z and the edge {x, z} is 1− r, and every other edge has 

the value 1. 

Theorem 3.2  For positive integers m1, m2, … , mr,  

|A(T4:m1,…,mr
)| = (−1)t(1 − 𝑟) [𝑟 ∏ (1 − 𝑚𝑖)

𝑟
𝑖=1 − ∑

(1−𝑚1)(1−𝑚2)⋯(1−𝑚𝑟)

(1−𝑚𝑖)
𝑟
𝑖=1 ], 

where t is the order of T4:m1,…,mr

0 . 
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Proof. By applying Lemma 3.1, we have |A(T4:m1,…,mr
)| = (−1)t|A(T4:m1,…,mr

0 x~z0, w)|, where t 

is the order of T4:m1,…,mr

0 . 

We partition the set of all linear subgraphs of T4:m1,…,mr

0 x~z0  into 2 classes ℋ1  which 

consists of all linear subgraphs containing a line {x, z}, and ℋ2 consisting of all linear subgraphs non-

containing line {x, z}. By Theorem 1.4, we have: 

|A(T4:m1,…,mr
)| = (−1)t|A(T4:m1,…,mr

0 x~z0, w)| = (−1)t ∑ (∑ |A(𝐻, w)|H∈ℋ𝑖
)2

i=1 . 

Consider ∑ |A(𝐻, w)|H∈ℋ1
 .  From ℋ1 is the class which consists of all linear subgraphs 

containing a line {x, z}, then ∑ |A(𝐻, w)|H∈ℋ1
= |

0 1 − 𝑟
1 − 𝑟 0

| |𝑇2:𝑚1

0 ||𝑇2:𝑚2

0 | ⋯ |𝑇2:𝑚𝑟

0 | = −(1 −

𝑟)2|𝑇2:𝑚1

0 ||𝑇2:𝑚2

0 | ⋯ |𝑇2:𝑚𝑟

0 |. 

From Lemma 1.1 (i), ∑ |A(H, w)|H∈ℋ1
= −(1 − r)2 ∏ (1 − mi)

r
i=1 . 

Next, consider ∑ |A(𝐻, w)|H∈ℋ2
 .  From ℋ2  is the class which consists of all linear 

subgraphs non-containing line {x, z}, then ∑ |A(𝐻, w)|H∈ℋ2
= (1 − 𝑟)|T4:m1,…,mr

0 |. 

From Lemma 1.1 (iii), ∑ |A(𝐻, w)|H∈ℋ2
= (1 − 𝑟) (∏ (1 − mi) − ∑

(1−m1)(1−m2)⋯(1−mr)

(1−mi)
r
i=1

r
i=1 ). 

Therefore, 

|A(T4:m1,…,mr
)| = (−1)t(−(1 − 𝑟)2 ∏ (1 − mi)

r
i=1 + (1 − 𝑟) (∏ (1 − mi) −r

i=1

∑
(1−m1)(1−m2)⋯(1−mr)

(1−mi)
r
i=1 )), 

= (−1)𝑡(1 − 𝑟) (𝑟 ∏ (1 − mi) − ∑
(1−m1)(1−m2)⋯(1−mr)

(1−mi)
r
i=1

r
i=1 ). 

 
Fig. 3. The 4 classes of linear subgraphs of T3:r,s

0 >y
x z0 



Proceedings of International Conference on Technology and Social Science 2017 

 
Fig. 4. Graph (T4:m1,…,mr

0 x~z0, w) of Lemma 3.1  

Acknowledgements 

The work was partially supported by the Research and Development Institute and the Faculty of 
Sciences and Technology, Kamphaeng Phet Rajabhat University, Kamphaeng Phet, Thailand. 

References 

[1] F. Harary, “Graph Theory”, Addison-Wesley, Reading, MA, 1969. 

[2] S.V. Gervacio and H. M. Rara, “Non-singular Trees”, Very Often Graphs, Vol. 2, (Ateneo de 

Manila University, March 1989). 

[3] S.V. Gervacio, “Trees with diameter less than 5 and non-singular complement”, Discrete Math., 

Vol. 151, pp. 91–97, 1996.  

[4]  N. Pipattanajinda and Y. Kim, “Trees with diameter 5 and non-singular complement”, Adv. Appl. 

Discrete Math., Vol. 16, No. 2, pp. 111–124, 2015. 

[5]  N. Pipattanajinda and Y. Kim, “The non-singularity of looped-trees and complement of trees with 

diameter 5”, Austras. J. Combin., Vol. 63, No. 2, pp. 297–313, 2015. 

[6] N. Pipattanajinda, “Graph with non-singularity”, Far East J. Math. Sciences, Vol. 95, pp. 1–17, 

2014. 

[7]  F. Harary, “The determinant of the adjacency matrix of a graph”, SIAM Review, Vol. 4, No. 3, pp. 

202–210, 1962.  


