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Abstract. Sound absorption coefficient in poroelastic media depends on material composed of
and geometry in the microscale. Sound energy is generally absorbed by viscous dissipation in
the vicinity of the boundary between solid and fluid phase, thermal dissipation to solid phase,
and structural damping of elastic material which solid phase is composed of. Multi-scale model
for sound-absorbing poroelastic media with periodic microscopic geometry has been recently
proposed by one of the authors. In this method, and homogenization method based on the method
of asymptotic expansions. Analysis in the microscopic scale is first performed by using unit cell
of the periodic structure and macroscopic properties are derived. The properties are then applied
to calculate macroscopic response such as sound absorption coefficient. In this paper we apply the
proposed method to artificial poroelastic material with periodic pore of rectangular shape made by
3D printing technique and compare calculated sound absorption coefficient for normal incidence
with measured one.

Keywords: Homogenization, Poroelastic material, Sound absorption coefficient, Additive manufac-
turing.

1. Introduction

Noise reduction to secure quietness in passenger compartments is one of the major issues in au-
tomotive engineering. One possible measure is to absorb sound by utilizing poroelastic media, e.g.,
floor carpets and dash insulators. In the design process of a vehicle, it is necessary to predict the
macroscopic performance of poroelastic media, such as their sound absorption coefficients. Poroelas-
tic material is composed of solid and fluid phases and the macroscopic performance of a poroelastic
material is governed by the characteristics of each phase. Since those characteristics depend signif-
icantly on the microscopic geometry of the poroelastic material, predicting the macroscopic perfor-
mance from the microscopic geometry would be essential for profound understanding of the physical
behavior involved.

Macroscopic properties and governing equations can also be derived from the microscopic geome-
try by using the homogenization theory based on the method of asymptotic expansions, assuming that
geometric periodicity exists on the micro-scale. Auliault et al. [1] considered a macroscopic descrip-
tion of rigid porous media saturated with an incompressible viscous fluid and derived a macroscopic
permeability tensor that they verified experimentally. Terada et al. [2] studied the macroscopic charac-
teristics of deformable poroelastic media saturated with an incompressible viscous fluid and presented
numerical results to show the practical applicability of their approach. Lafarge et al. [3], Boutin et
al. [4], and Lee [5] derived the macroscopic models of sound propagation through rigid porous media.
Air contained in pores was modeled as a compressible viscous fluid, and the thermal dissipation from
the fluid phase to the solid phase was also taken into account. Levy [6], and Burridge and Keller [7]
derived the macroscopic governing equations of deformable poroelastic media saturated with a com-
pressible viscous fluid. However, the thermal dissipation from the fluid phase into the solid phase was
not taken into account and accordingly, the bulk modulus of the fluid phase was assumed to be con-
stant. Although sound absorption in poroelastic media is a typical multiphysics phenomenon where
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the behavior of the elastic solid, the compressible viscous fluid and the fluid temperature must be all
considered at the same time, the studies mentioned above deal with only some of the physics observed
in sound-absorbing poroelastic media.

Therefore, in the study presented here, we propose a general and complete model that describes the
macroscopic properties and the governing equations of sound-absorbing poroelastic media using the
mathematical homogenization method. This model takes into account the motions of the elastic solid
and compressible viscous fluid, and the distribution of temperature in the fluid. All physical variables
mentioned in this study are shown in the frequency domain, assuming a harmonic regime with angular
frequencyω. Pressure, temperature and mass density in the fluid phase denote deviations from the
equilibrium state with the pressure represented byP f , the temperatureT f , and the mass densityρf .

2. Governing equations

The governing equations for a sound-absorbing poroelastic material on the microscopic scale are
now considered. We assume that the solid phase is composed of linear elastic material and that the
fluid phase is saturated with a compressible viscous fluid of viscosityµf . The domain of the fluid
phase is assumed to be connected throughout the material.

In the solid phase the linear equations of elasticity are given as follows:
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In the fluid phase the mass conservation law and the state equation of gas lead to
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whereδf andτ f are the perturbations of the mass density and the temperature, respectively.
Since infinitesimal harmonic motions are supposed in the fluid phase, the Navier-Stokes equation

can be linearized and written as
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wherevfi is the velocity of the fluid phase.
When the specific heat capacity of the solid phase is much larger than that of the fluid phase,

the solid phase can maintain isothermal conditions. Now letqfi , Cf
v , R, andκfij be the thermal flux,

the specific heat under constant volume, the gas constant, and the thermal conductivity, respectively.
From the energy conservation law the set of governing equations for the temperature in the fluid phase
is derived as
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When we consider the continuity of the velocity, the strain and the temperature, the conditions at
the boundaryΓsf between the solid and fluid phases are given as follows:

jωusi = vfi , σ
s
ijn

s
j + σf

ijn
f
j = 0, τ f = 0, on Γsf , (5)

wherens
j andnf

j are the outward unit vectors normal to the boundaryΓsf .



Proceedings of International Conference on Technology and Social Science 2017

3. Boundary value problems for homogenization

Following Sanchez-Palencia [8], we assume a solution in the asymptotically expanded form for
physical variablesusi , v

f
i , pf , τ f , andδf such asusi = u

s(0)
i (x,y)+ ϵu

s(1)
i (x,y)+ ϵ2u

s(2)
i (x,y)+ · · · ,

where all the functions on the right-hand side of the equations areY -periodic, i.e., periodic in terms
of y with the period of a unit cellY . Then the forms ofusi , v

f
i , pf , τ f , andδf are substituted into the

governing equations.
From the linearity of the material, the displacementu
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Thusηi(y) is also obtained by solving the equation with a constraint condition
∫
Y

ηi(y)dY = 0.

The fluid velocity relative to the solid phasewf(0) is defined bywf(0)
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Therefore the characteristic functionsξki (y) andπk(y) can be obtained by solving Eqs. (8) with a

constraint condition
∫
Y

πk(y)dY = 0.

Since the temperatureτ f(0) is linear with respect to the pressurepf(0)(x), τ f(0) can be written
asτ f(0) = 1

ρfCf
p
ζ(y)pf(0)(x) whereζ(y) is aY -periodic characteristic function for the thermal field

and satisfies the isothermal boundary condition,ζ(y) = 0. Whenpf(0)(x) is set to 1 in the thermal
equilibrium equation, we obtain the following equation:∫
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Thus the characteristic functionζ(y) for the temperature distribution in the fluid phase can be obtained
by solving this boundary value problem.
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4. Macroscopic governing equations

Averaging the equilibrium equations of the solid phase over a unit cellY , and using⟨vf(0)i ⟩ =

⟨wf(0)
i ⟩ + jωϕu

s(0)
i , ⟨σf(0)

ij ⟩ = −ϕpf(0), andpf(0) = −jωψf(0), we can obtain the macroscopic gov-
erning equation for the solid phase as follows:
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whereσ̂s(0)
ij = cHijklε

s(0)
kl is the stress of the solid phase uncoupled from the fluid phase, anddki is

defined asdki = ρfjω⟨ξki (y)⟩.
Averaging the equilibrium equations and the mass conservation law of the fluid phase over a unit

cell Y , we can obtain the macroscopic governing equation for the fluid phase as follows:
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The coefficients on the macroscopic scale –cHijkl, k
H
ij , dki , K

f , θs,ij, andθf – are fundamentally
correlated with the microscopic structures of the poroelastic media.

5. Applications to artificial poroelastic material

(a) w=1.5mm,2a=1.0mm (b) w=2.2mm,2a=1.5mm (c) w=2.9mm,2a=2.0mm

Figure 1:Artificial poroelastic materials made by additive manufacturing.

We apply the method described above to artificial poroelastic material with periodic pores of
square cross-section made by additive manufacturing technique, and compare calculated sound ab-
sorption coefficient for normal incidence with measured one to verify the proposed multiscale analy-
sis.

Figure5 shows artificial poroelastic materials made by Projet 3500 HD Max of 3D Systems. The
size of square pores of Figs.5 (a), (b) and (c) is 1.0mm, 1.5mm, and 2.0mm, respectively, and the
wall thickness of the solid phase is 0.5 mm, 0.7 mm and 0.9 mm, respectively. The diameter and the
thickness of these materials is 29 mm and 20 mm, respectively. Acryl is used for the material of the
solid phase.

Sound absorption coefficients for normal incidence are measured by the acoustic tube of B&K
Type 4206 and identified by the conventional two microphones method.
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Figure 2:Finite element model in microscopic scale.

(a) w=1.5mm,2a=1.0mm (b) w=2.2mm,2a=1.5mm (c) w=2.9mm,2a=2.0mm

Figure 3:Comparisons with calculated and measured sound absorption coefficients.

Figure5 shows finite element model of poroelastic material. Young’s modulus, mass density and
loss factor of acryl material are 1.46 GPa, 1020 kg/m3 and 0.100, respectively. Mass density, speed
of sound, viscosity, and themal conductivity of air are given as 1.19 kg/m3, 345 m/s, 1.82× 10−5 Pa
· s and 0.0257 W/m· K, respectively.

Figure5 compares measured absorption coefficients and calculated one from 500 Hz to 6.4 kHz.
Calculated sound absorption coefficients agree well with measured absorption coefficients.

6. Conclusions

A homogenized model for sound-absorbing poroelastic media was formulated based on the method
of asymptotic expansions, taking into account viscous damping, thermal dissipation, and coupling ef-
fects between the solid and fluid phases. Several artificial poroelastic materials that have periodic
cubic pores were made by 3D printer. Sound absorption coefficients calculated by the proposed ap-
proach agree well with those obtained by the measurement.
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