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Abstract. We consider a fluid flowing on an inclined channel. The fluid depth is much smaller than 

the unity length, so that it can be formulated based on lubrication theory into a single equation of the 

fluid depth. Since the model is partial differential equation and strongly non-linear, a numerical 

approach is proposed to get the solution. From the linearized model, the solution presents surface wave 

propagating with decreasing the amplitude and a forward time central space is conditionally stable. 

Therefore, the numerical solution is studied to simulate the wave propagation. The character of the 

wave is confirmed. 

1. Introduction 

Thin-film fluid is considered on an inclined channel, so that the gravity drives the fluid going down. 

Since the thickness of the fluid is much smaller than the unity of the length, the lubrication theory can 

be applied as the momentum equation. Together with the continuity equation and some boundary 

conditions, the governing equation can be expressed as a single equation of the thickness of the fluid. 

Wiryanto and Febrianti [1] derived the equation. Similar model can also be seen in King, at. al. [2] for 

steady flow but involving air flow above the thin film in different direction. They obtained the model 

in an integro-different equation as the interaction between the fluid and the air. Analytical work shows 

that the fluid surface presents periodic wave, and it is confirmed by its numerical solution.  

In contrast with steady model, we are interested in model of unsteady but without upper air flow. 

The equation is strongly non-linear of the variable of the thickness of the fluid depth presenting wave 

propagation. Wiryanto [3] then analyzed the character of the wave through the linearized model. He 

obtained that the wave in its propagation is damped. In his analysis, the solution is presented as 

monochromatic wave. However, the amplitude depends on time with exponent form of negative 

coefficient, so that it decreases by increasing time. 

From that wave character of the linearized model, we are interested in this study to observe the 

solution of the original equation, non-liner form. Numerical approach is used to get the solution. 

Forward-time central space is chosen as the method, since the method is stable with a certain condition. 

King, et. al. [2] indicated that the solution tends to a type of wave called roll wave. This character can 

be also obtained by Fauzan and Wiryanto [4] for shallow water model. The periodic wave propagates 

with deforming to roll wave for a certain condition, relating to the average depth and velocity. Study 

of that type of wave can be referred some in [5, 6, 7]. In our work, the surface wave of thin-film flow 

indicates deforming to roll wave by tending the profile sharping at the front wave. 

2. Formulation 

The sketch of the flow and coordinates are shown in Fig. 1. The fluid flows on an inclined channel 

of angle 𝜃. The thickness is ℎ mesured from the bottom of the channel. We choose the horizontal 

𝑥 −axis is along the bottom of the channel and the vertical 𝑦 −axis is perpendicular to 𝑥 −axis, so 

that the gravity is proyected to those axis effected to the movement of the fluid particle.  
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Fig. 1. Sketch of the flow and coordinates  

 
Following Wiryanto and Febrianti [1], when the fluid thickness is disturbed by ℎ(𝑥, 0) it changes 

satisfying the model  
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where 𝜌 is the fluid density, 𝜇 is viscosity, 𝑔 is the accelation of gravity. The equation was derived 

based on the continuity equation and Navier Stokes equation as the momentum equation. Since the 

thickness is much smaller than the horizontal unity, lubrication theory can simplify to momentum 

equation. When they are solved by involving the boundary conditions, un-slip condition along the 

bottom. kinematics condition and zero pressure at the surface, we come to (1). 

Near constant solution ℎ0, we suppose the solution in ℎ(𝑥, 𝑡) = ℎ0 + 𝜀 𝜂(𝑥, 𝑡) for small 𝜀. When 

it is substituted in (1) and we take the first order we have a linear equation. Wiryanto [3] then analyzed 

that the equation has solution with deceasing the amplitude by increasing time. Meanwhile, a finite 

difference method of forward-time central space (FTCS) for the linear equation is stable when 
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  . ∆𝑡, ∆𝑥 are the time step and the length of the space discretization. 𝑏 = 𝜌𝑔 cos 𝜃 /3𝜇 is 

constant. 

Based on that analysis, we then develop the numerical procedure for (1) by FTCS considering the 

stability condition. We discretize the space 𝑥 into 𝐽 subintervals with end points 𝑥𝑗 = 𝑗 ∆𝑥, for 𝑗 =

0, 1, 2, … , 𝐽, so that we define  ,n

j j nh h x t . After discretization, the finite difference equation for (1) 

can be expressed in explicit form 
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We denote 𝑎 = 𝜌 𝑔 sin 𝜃 /(3𝜇). For calculating 1n

jh   we need 5 values of ℎ at the previous step 

time. When 𝑗 = 0 and 𝑗 = 𝐽 we need two valued of ℎ outside of the observation domain. We provide 

by considering the periodic solution. So we use condition 
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boundaries and 
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    for the right boundaries. These conditions express that we 

follow the wave, and we expect that we can see the wave deformation. 

3. Numerical Solution 

In this section, we present the numerical solution of the model (1). Most of our calculations uses 

𝑔 = 10, 𝜌 = 1, and various values 𝜇 and angle 𝜃, but we choose small 𝜃. For 
05 0.017 radianθ  
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and 𝜇 = 2  following the stability criteria, for ∆𝑥 = 0.1  the step time is ∆𝑡 < 0.016 . In our 

calculation we use ∆𝑡 = 0.01.  

 

 
Fig. 2. Plot of some free surfaces ℎ𝑗

𝑛, each curve presenting surface for different time 𝑛, 

by shifting upward to show the simulation and the deformation of the surface from initial 

condition  0 0.2 0.05 sin 0.25j jh π x   

 

 
Fig. 3. Similar to Figure 2, ℎ𝑗

𝑛 calculated using the initial condition  

ℎ𝑗
0 = 0.2 + 0.1 sech[0.15(𝑥𝑗 − 20)] 

 

As the initial value the surface is in sinusoidal  0 0.2 0.05 sin 0.25j jh π x   at the observation 

domain 0 100x  . For the linear model, this initial value gives similar profile with smaller 

amplitude. The effect of nonlinearity is shown in Fig. 2. We plot some free surfaces in the same plane 

for different time by shifting upward for higher time. We can see the deformation of the surface profile, 

from sinusoidal to sharper at the front wave, followed by decreasing the amplitude. In Fig. 3, we show 

another solution of (1) with initial value ℎ𝑗
0 = 0.2 + 0.1 sech[0.15(𝑥𝑗 − 20)] . The wave propagates 

with changing the form.  
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4. Conclusion 

A finite difference method FTCS has been applied to the model of thin film flow. The stability 

condition for the linear model is valid for non-linear one, so that the method can be used to simulate 

the wave propagation. The effect of the non-linearity has been shown by changing the form. 
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